Vinck Lab

Using prediction and timing to encode information in the brain

Research statement

The lab’s research is divided into three research lines: Circuits - Ensembles - Learning (CEL), funded by ERC and BMF grants and support from the ESI:

Circuits: We investigate how distinct classes of excitatory and inhibitory neurons regulate plasticity and contribute to flexible information processing.

Ensembles: We investigate how ensembles of neurons encode information through spatio-temporal patterns and what the role of spike sequences and bursting are in information encoding and transmission. Furthermore we investigate what the relationship between spontaneous (imagination, dreams) and sensory evoked activity is.

Learning: We investigate how the brain performs self-supervised learning using predictions of the unknown (in space and time), utilizes parallel features for object recognition (motion, form, texture) and uses recurrent networks for object recognition.

To answer these kind of questions, we use a variety of techniques and approaches. We employ machine learning techniques to model predictive relationships among sensory inputs - across space and time. We develop new algorithms for unsupervised clustering of high-dimensional neural datasets. We use information and neural network theory to understand neural coding. We use high-density, multi-areal electrophysiological recordings of neurons, from all cortical layers. This allows us to record many neurons at the same time. We use optogenetics to identify subtypes of neurons - like interneurons or neurons with specific projection patterns - and modify cortical activity. We classify the state of the organism using e.g. pupil diameter. We develop new types of signal processing techniques to deal with electrophysiological data

More information on Martin Vinck’s personal website

Key Publications

Onorato I, Neuenschwander S, Hoy J, Lima B, Rocha KS, Broggini AC, Uran C, Spyropoulos G, Klon-Lipok J, Womelsdorf T, Fries P, Niell C, Singer W, Vinck M (2020). A distinct class of bursting neurons with strong gamma synchronization and stimulus selectivity in monkey V1. Neuron 105(1), 180-197.e5. https://doi.org/10.1016/j.neuron.2019.09.039

Peter A, Uran C, Klon-Lipok J, Roese R, van Stijn S, Barnes W, Dowdall JR, Singer W, Fries P, Vinck M (2019). Surface color and predictability determine contextual modulation of V1 firing and gamma oscillations. eLife 8, e42101. https://doi.org/10.7554/eLife.42101

Grossberger L, Battaglia FP, Vinck M (2018). Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure. PLoS Comput Biol 14(7), e1006283. https://doi.org/10.1371/journal.pcbi.1006283

Vinck M, Batista-Brito R, Knoblich U, Cardin JA (2015). Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86(3), 740-754. https://doi.org/10.1016/j.neuron.2015.03.028

Vinck M, Womelsdorf T, Buffalo EA, Desimone R, Fries P (2013). Attentional modulation of cell-class-specific gamma-band synchronization in awake monkey area V4. Neuron 80(4), 1077-1089. https://doi.org/10.1016/j.neuron.2013.08.019